PSD-95/Disc large/Zonula occludens 1 (PDZ) domain-containing proteins (PDZ proteins) play an important role in the targeting and the trafficking of transmembrane proteins. Our previous studies identified a set of PDZ proteins that interact with the C terminus of the serotonin 5-hydroxytryptamine (5-HT)(2C) receptor. Here, we show that the prototypic scaffolding protein postsynaptic density-95 (PSD-95) and another membrane-associated guanylate kinase, MAGUK p55 subfamily member 3 (MPP3), oppositely regulate desensitization of the receptor response in both heterologous cells and mice cortical neurons in primary culture. PSD-95 increased desensitization of the 5-HT(2C) receptor-mediated Ca(2+) response, whereas MPP3 prevented desensitization of the Ca(2+) response. The effects of the PDZ proteins on the desensitization of the Ca(2+) response were correlated with a differential regulation of cell surface expression of the receptor. Additional experiments were performed to assess how PDZ proteins globally modulate desensitization of the 5-HT(2C) receptor response in neurons, by using a peptidyl mimetic of the 5-HT(2C) receptor C terminus fused to the human immunodeficiency virus type-1 Tat protein transduction domain, which disrupts interaction between the 5-HT(2C) receptor and PDZ proteins. Transduction of this peptide inhibitor into cultured cortical neurons increased the desensitization of the 5-HT(2C) receptor-mediated Ca(2+) response. This indicates that, overall, interaction of 5-HT(2C) receptors with PDZ proteins inhibits receptor desensitization in cortical neurons.