We investigated the role of the NO/cGMP system in the vasodilatory response to hypercapnia after cortical spreading depression (CSD) in barbiturate anesthetized rats in vivo. Regional cerebral blood flow (rCBF) was measured by laser Doppler flowmetry (LDF). Hypercapnia (arterial pCO2 50-60 mm Hg) increased rCBF by 2.8+/-1.0%/mm Hg (n = 34). Fifteen minutes after CSD, resting rCBF was reduced to 87%, and rCBF response to hypercapnia was abolished (p < 0.001, n = 28). Within 1 h after CSD, only little restoration of vascular reactivity occurred. Topical application of the NO-donors S-nitroso-N-acetylpenicillamine (SNAP), 3-morpholinosydnonimine (SIN1), or spermine/NO complex (Sperm/NO), or of the cell permeable guanosine 3',5'-cyclic monophosphate (cGMP) analogue 8-Br-cGMP reestablished resting rCBF to values measured before CSD, and reversed CSD-induced attenuation of the cerebrovascular response to hypercapnia. Restoration of resting rCBF to pre-CSD level by the NO-independent vasodilator papaverine had no effect on the attenuated hypercapnic response. In conclusion, we have shown that the compromised vascular reactivity to hypercapnia after CSD can be reversed to normal reactivity by restoration of the basal NO or cGMP concentration in the cortex, suggesting a reduction of the cerebrovascular NO or cGMP concentration following CSD.