Human cerebral cortex: a system for the integration of volume- and surface-based representations

Neuroimage. 2006 Oct 15;33(1):139-53. doi: 10.1016/j.neuroimage.2006.04.220. Epub 2006 Aug 22.

Abstract

We describe an MRI-based system for topological analysis followed by measurements of topographic features for the human cerebral cortex that takes as its starting point volumetric segmentation data. This permits interoperation between volume-based and surface-based topographic analysis and extends the functionality of many existing segmentation schemes. We demonstrate the utility of these operations in individual as well as to group analysis. The methodology integrates analyses of cortical segmentation data generated by manual and semi-automated volumetric morphometry routines (such as the program cardviews) with the procedures of the FreeSurfer program to generate a cortical ribbon of the cerebrum and perform cortical topographic measurements (including thickness, surface area and curvature) in individual subjects as well as in subject populations. This system allows the computation of topographical cortical measurements for segmentation data generated from manual and semi-automated volumetric sources other than FreeSurfer. These measurements can be regionally specific and integrated with systems of cortical parcellation that subdivides the neocortex into gyral-based parcellation units (PUs). This system of topographical analysis of the cerebral cortex is consistent with current views of cortical development and neural systems organization of the human and non-human primate brain.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Algorithms
  • Cerebral Cortex / anatomy & histology*
  • Diffusion Magnetic Resonance Imaging
  • Female
  • Functional Laterality / physiology
  • Humans
  • Image Processing, Computer-Assisted / statistics & numerical data
  • Magnetic Resonance Imaging
  • Male
  • Middle Aged
  • Reproducibility of Results
  • Software