Herpes simplex virus type 1 (HSV-1) uses multicomponent mechanisms for binding, penetration, and cell-to-cell passage. These processes are affected by polysulfonated compounds. In this paper we have addressed the question of whether the same or different interactions of HSV-1 with polysulfonated compounds are involved in binding, penetration, and passage. For this, we have compared the inhibitory dose-response for a series of polysulfonated and cationic compounds known to block HSV-1 infections. These comparisons were done at the level of binding, penetration, and cell-to-cell passage. Variations in the parameters of the dose-response curves - IC(50) and Hill coefficients (n (H)) - are consistent with HSV-1 having multiple interactions with sulfonated cellular components in all these processes. Some of the interactions seem to be common to the three processes, while others are particular for each one.