Elucidating the regulatory mechanisms of plant organ formation is an important component of plant developmental biology and will be useful for crop improvement applications. Plant organ formation, or organogenesis, occurs when a group of primordial cells differentiates into an organ, through a well-orchestrated series of events, with a given shape, structure and function. Research over the past two decades has elucidated the molecular mechanisms of organ identity and dorsalventral axis determinations. However, little is known about the molecular mechanisms underlying the successive processes. To develop an effective approach for studying organ formation at the molecular level, we generated organ-specific gene expression profiles (GEPs) reflecting early development in rice stamen. In this study, we demonstrated that the GEPs are highly correlated with early stamen development, suggesting that this analysis is useful for dissecting stamen development regulation. Based on the molecular and morphological correlation, we found that over 26 genes, that were preferentially up-regulated during early stamen development, may participate in stamen development regulation. In addition, we found that differentially expressed genes during early stamen development are clustered into two clades, suggesting that stamen development may comprise of two distinct phases of pattern formation and cellular differentiation. Moreover, the organ-specific quantitative changes in gene expression levels may play a critical role for regulating plant organ formation.