Purpose: To compare relative reduction of retinal ganglion cell (RGC) function and retinal nerve fiber layer (RNFL) thickness in early glaucoma by means of steady-state pattern electroretinogram (PERG) and optical coherence tomography (OCT), respectively.
Methods: Eighty-four persons with suspected glaucoma due to disc abnormalities (GS: mean age 56.6 +/- 13.8 years, standard automated perimetry [SAP] mean deviation [MD] -0.58 +/- 1.34 dB) and 34 patients with early manifest glaucoma (EMG, mean age 65.9 +/- 10.7 years, SAP MD -2.7 +/- 4.5 dB) were tested with PERG and OCT. Both GS and EMG patients had small refractive errors, corrected visual acuity > or =20/25, and no systemic or retinal disease other than glaucoma.
Results: MDs from age-predicted normal values were larger for PERG amplitude (GS: -1.113 dB; EMG: -2.352 dB) compared with the PERG-matched RNFL thickness (GS: -0.217 dB; EMG: -0.725 dB). Deviations exceeding the lower 95% tolerance intervals of the normal population were more frequent for PERG amplitude (GS: 26%; EMG: 56%) than PERG-matched RNFL thickness (GS: 6%; EMG: 29%).
Conclusions: In early glaucoma, reduction in RGC electrical activity exceeds the proportion expected from lost RGC axons, suggesting that a population of viable RGCs in the central retina is dysfunctional. By combining PERG and OCT it is, in principle, possible to obtain unique information on reduced responsiveness of viable RGCs.