Aerolysin from Aeromonas sobria AB3 was isolated and purified. The pure toxin formed sodium dodecyl sulfate-insoluble oligomers in a lipidic environment. The addition of aerolysin to the aqueous phase bathing lipid bilayer membranes resulted in the formation of ion-permeable channels which had a single-channel conductance of about 70 pS in 0.1 M KCl. This defines the toxin as a channel-forming component similar to other toxins but without any indication for an association-dissociation reaction, since the channels had a long lifetime at low voltages. At voltages higher than 50 mV, the aerolysin channel switched into a closed state with a low residual conductance. The single-channel conductance was a linear function of the total aqueous conductance, which suggested that the toxin oligomers formed aqueous channels with an estimated minimal diameter of about 0.7 nm. The aerolysin pores were found to be slightly anion selective. The pore-forming properties of aerolysin were compared with those of alpha-toxin of Staphylococcus aureus. Both aerolysin and alpha-toxin share secondary structure features, must oligomerize to form pores in lipid bilayer membranes, and form channels with similar properties.