The ability of macrophages to adapt to changing cytokine environments results in the dominance of a particular functional phenotype of macrophages, which would play a significant role in HIV pathogenesis. In comparison with untreated macrophages (M0), we examined the role of macrophages derived from IFN-gamma-activated monocytes (M1) in the HIV spread. We show that M0 and M1 bind with the same efficiency HIV-1 with a predominant role of C-type lectins in the R5-HIV attachment and of the heparan sulfate proteoglycans in the X4-HIV attachment. Despite similar levels of R5- and X4-HIV DNA, M1 replicates and weakly transmits the virus to activated T cells by releasing CXCR4- and CCR5-interacting chemokines. The blockade of dendritic cell-specific ICAM-3-grabbing nonintegrin expressed on M1 by mAb does not interfere with the viral transfer. Uninfected M1 recruits HIV-sensitive T cells efficiently and releases soluble factors, enhancing the viral production by these recruited cells. This study highlights the role of IFN-gamma to induce a population of macrophages that archive HIV-1 within a latent stage and cause the persistence of the virus by favoring the recruitment of T cells or enhancing the viral replication in infected CD4(+) T cells.