Aim: The purpose of the present study was to examine the relationship between time limit at the minimum velocity that elicits the individual's maximal oxygen consumption (TLim-v VO2max) and three swimming economy related parameters: the net energy cost corresponding to v VO2max (Cv VO2max), the slope of the regression line obtained from the energy expenditure (E) and corresponding velocities during an incremental test (C(slope)) and the ratio between the mean E value and the velocity mean value of the incremental test (C(inc)). Complementarily, we analysed the influence of Cv VO2max, C(slope) and C(inc) on TLim-v VO2max by swimming level.
Methods: Thirty swimmers divided into 10 low-level (LLS) (4 male and 6 female) and 20 highly trained swimmers (HTS) (10 of each gender) performed an incremental test for v VO2max assessment and an all-out TLim-v VO2max test.
Results: TLim-v VO2max, v VO2max, Cv fVO2max, C(slope) and C(inc) averaged, respectively, 313.8+/-63 s, 1.16+/-0.1 m x s(-1), 13.2+/-1.9 J x kg(-1) x m(-1), 28+/-3.2 J x kg(-1) x m(-1) and 10.9+/-1.8 J x kg(-1) x m(-1) in the LLS and 237.3+/-54.6 s, 1.4+/-0.1 m x s(-1), 15.6+/-2.2 J x kg(-1) x m(-1), 36.8+/-4.5 J x kg(-1) x m(-1) and 13+/-2.3 J x kg(-1) x m(-1) in the HTS. TLim-v VO2max was inversely related to C(slope) (r = -0.77, P < 0.001), and to v VO2max (r = -0.35, P = 0.05), although no relationships with the Cv VO2max and the C(inc) were observed.
Conclusions: The findings of this study confirmed exercise economy as an important factor for swimming performance. The data demonstrated that the swimmers with higher and v VO2max performed shorter time in TLim-v VO2max efforts.