Normal endothelium

Handb Exp Pharmacol. 2006:(176 Pt 1):1-40. doi: 10.1007/3-540-32967-6_1.

Abstract

In recent decades, it has become evident that the endothelium is by no means a passive inner lining of blood vessels. This 'organ' with a large surface (approximately 350 m2) and a comparatively small total mass (approximately 110 g) is actively involved in vital functions of the cardiovascular system, including regulation of perfusion, fluid and solute exchange, haemostasis and coagulation, inflammatory responses, vasculogenesis and angiogenesis. The present chapter focusses on two central aspects of endothelial structure and function: (1) the heterogeneity in endothelial properties between species, organs, vessel classes and even within individual vessels and (2) the composition and role of the molecular layer on the luminal surface of endothelial cells. The endothelial lining of blood vessels in different organs differs with respect to morphology and permeability and is classified as 'continuous', 'fenestrated' or 'discontinuous'. Furthermore, the mediator release, antigen presentation or stress responses of endothelial cells vary between species, different organs and vessel classes. Finally there are relevant differences even between adjacent endothelial cells, with some cells exhibiting specific functional properties, e.g. as pacemaker cells for intercellular calcium signals. Organ-specific structural and functional properties of the endothelium are marked in the vascular beds of the lung and the brain. Pulmonary endothelium exhibits a high constitutive expression of adhesion molecules which may contribute to the margination of the large intravascular pool of leucocytes in the lung. Furthermore, the pulmonary microcirculation is less permeable to protein and water flux as compared to large pulmonary vessels. Endothelial cells of the blood-brain barrier exhibit a specialised phenotype with no fenestrations, extensive tight junctions and sparse pinocytotic vesicular transport. This barrier allows a strict control of exchange of solutes and circulating cells between the plasma and the interstitial space. It was observed that average haematocrit levels in muscle capillaries are much lower as compared to systemic haematocrit, and that flow resistance of microvascular beds is higher than expected from in vitro studies of blood rheology. This evidence stimulated the concept of a substantial layer on the luminal endothelial surface (endothelial surface layer, ESL) with a thickness in the range of 0.5-1 microm. In comparison, the typical thickness of the glycocalyx directly anchored in the endothelial plasma membrane, as seen in electron micrographs, amounts to only about 50-100 microm. Therefore it is assumed that additional components, e.g. adsorbed plasma proteins or hyaluronan, are essential in constituting the ESL. Functional consequences of the ESL presence are not yet sufficiently understood and acknowledged. However, it is evident that the thick endothelial surface layer significantly impacts haemodynamic conditions, mechanical stresses acting on red cells in microvessels, oxygen transport, vascular control, coagulation, inflammation and atherosclerosis.

Publication types

  • Review

MeSH terms

  • Animals
  • Blood Flow Velocity
  • Blood-Brain Barrier / cytology
  • Blood-Brain Barrier / physiology
  • Carbohydrate Sequence
  • Endothelial Cells / cytology*
  • Endothelial Cells / physiology
  • Endothelium, Vascular / anatomy & histology*
  • Endothelium, Vascular / chemistry
  • Endothelium, Vascular / physiology
  • Glycocalyx / ultrastructure
  • Humans
  • Intercellular Junctions / ultrastructure
  • Lung / blood supply*
  • Lymphatic Vessels / cytology
  • Lymphatic Vessels / physiology
  • Molecular Sequence Data
  • Organ Specificity
  • Species Specificity