Dendritic cells (DC) likely play important and unique roles in the generation of protective immunity to mycobacteria. In order to clarify their contributions, bone marrow-derived DC loaded with Mycobacterium tuberculosis sonicate antigens were used to stimulate T cell proliferation both in vitro and in vivo and to vaccinate C57BL/6 mice against subsequent challenge with virulent mycobacteria. Antigen-pulsed DC developed in fetal calf serum (FCS-DC), but not DC developed in normal mouse serum (NMS-DC), stimulated significant proliferation of both naïve and immune T cells in vitro. The difference between cell populations developed in FCS and NMS in the content of CD11c(+) cells and in production of key cytokines indicated that NMS is less supportive for the development of activated DC. However, following adoptive transfer of a single dose of antigen-pulsed DC into naive recipients, NMS-DC induced T cells that proliferated in response to mycobacterial antigen, whereas FCS-DC stimulated strong non-specific proliferation. Vaccination with two doses of antigen-pulsed NMS-DC by the subcutaneous route induced significant protection against intravenous challenge with a moderate dose of virulent M. tuberculosis. DC-vaccinated mice exhibited significant reductions in bacillary loads in the lungs and spleens, and markedly reduced lung pathology. Three doses of antigen-pulsed NMS-DC induced a significant increase in survival time following high dose challenge, which correlated with a significant increase in IFN-gamma-producing cells in both lung and lymphoid tissues, as assessed by the ELISPOT assay. Taken together, these results indicate that DC play a critical role in the induction of protective resistance against virulent mycobacterial challenge accompanied by the development of antigen-reactive, IFN-gamma-producing T cells, and that their antigenic specificity is influenced by the culture conditions under which the DC are developed.