Mercury accumulation in soils and plants in the Almadén mining district, Spain: one of the most contaminated sites on Earth

Environ Geochem Health. 2006 Oct;28(5):487-98. doi: 10.1007/s10653-006-9058-9. Epub 2006 Sep 22.

Abstract

Although mercury (Hg) mining in the Almadén district ceased in May 2002, the consequences of 2000 years of mining in the district has resulted in the dissemination of Hg into the surrounding environment where it poses an evident risk to biota and human health. This risk needs to be properly evaluated. The uptake of Hg has been found to be plant-specific. To establish the different manners in which plants absorb Hg, we carried out a survey of Hg levels in the soils and plants in the most representative habitats of this Mediterranean area and found that the Hg concentrations varied greatly and were dependent on the sample being tested (0.13-2,695 microg g(-1) Hg). For example, the root samples had concentrations ranging from 0.06 (Oenanthe crocata, Rumex induratus) to 1095 (Polypogon monspeliensis) microg g(-1) Hg, while in the leaf samples, the range was from 0.16 (Cyperus longus) to 1278 (Polypogon monspeliensis) microg g(-1) Hg. There are four well-differentiated patterns of Hg uptake: (1) the rate of uptake is constant, independent of Hg concentration in the soil (e.g., Pistacia lentiscus, Quercus rotundifolia); (2) after an initial linear relationship between uptake and soil concentration, no further increase in Hg(plant) is observed (e.g., Asparagus acutifolius, Cistus ladanifer); (3) no increase in uptake is recorded until a threshold is surpassed, and thereafter a linear relationship between Hg(plant) and Hg(soil) is established (e.g., Rumex bucephalophorus, Cistus crispus); (4) there is no relationship between Hg(plant) and Hg(soil )(e.g., Oenanthe crocata and Cistus monspeliensis). Overall, the Hg concentrations found in plants from the Almadén district clearly reflect the importance of contamination processes throughout the study region.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Environmental Exposure / analysis
  • Mercury / analysis*
  • Mercury / toxicity
  • Mining*
  • Plant Leaves / drug effects
  • Plant Leaves / metabolism
  • Plant Roots / drug effects
  • Plant Roots / metabolism
  • Plants / drug effects
  • Plants / metabolism*
  • Risk Assessment
  • Soil Pollutants / analysis*
  • Spain

Substances

  • Soil Pollutants
  • Mercury