Recent decades have revealed that many bacterial species are capable of communicating with each other, and this observation has been largely responsible for a paradigm shift in microbiology. Whereas it was previously believed that bacteria lived as individual cells, it is now acknowledged that bacteria preferentially live in communities in the form of primitive organisms in which the behavior of individual cells is coordinated by cell-cell communication, known as quorum sensing (QS). Bacteria use QS for regulation of the processes involved in their interaction with each other, their environment, and, particularly, higher organisms We have focused on Pseudomonas aeruginosa, an opportunistic pathogen producing more than 30 QS-regulated virulence factors. P. aeruginosa causes several types of nosocomial infection, and lung infection in cystic fibrosis (CF) patients. We review the role of QS in the protective mechanisms of P. aeruginosa and show how disruption of the QS can be used as an approach to control this cunning aggressor.