Because spin-flip length is longer than the electron mean-free path in a metal, past studies of spin-flip scattering are limited to the diffusive regime. We propose to use a magnetic double barrier tunnel junction to study spin-flip scattering in the nanometer sized spacer layer near the ballistic limit. We extract the voltage and temperature dependence of the spin-flip conductance Gs in the spacer layer from magnetoresistance measurements. In addition to spin scattering information including the mean-free path (70 nm) and the spin-flip length (1.0-2.6 microm) at 4.2 K, this technique also yields information on the density of states and quantum well resonance in the spacer layer.