Light scattered from biological tissues can exhibit an inverse power law spectral component. We develop a model based on the Born approximation and von Karman (self-affine) spatial correlation of submicron tissue refractive index to account for this. The model is applied to light scattering spectra obtained from excised esophagi of normal and carcinogen-treated rats. Power law exponents used to fit dysplastic tissue site spectra are significantly smaller than those from normal sites, indicating that changes in tissue self-affinity can serve as a potential biomarker for precancer.