ICOS/B7RP-1 is a new member of the CD28/B7 family of costimulatory molecules and plays differential roles in autoimmune diseases. In this study, we examined the role of ICOS/B7RP-1 pathway in the pathogenesis of mouse experimental autoimmune uveoretinitis (EAU), an animal model of human autoimmune uveitis. ICOS expression was found on infiltrating CD4+ T cells in the region of the retina in EAU-induced mice. The anti-B7RP-1 monoclonal antibody (mAb)-treated or ICOS-deficient mice showed a substantial reduction of disease scores. Blockade of ICOS/B7RP-1 interaction during the effector phase ameliorated the disease, whereas its blockade during the induction phase exhibited no significant effect. Moreover, administration of anti-B7RP-1 mAb effectively ameliorated the disease induced by adoptive transfer of pathogenic T cells. The anti-B7RP-1 mAb treatment inhibited the expansion and/or effector function of pathogenic T cells, given that proliferative response and IFN-gamma production by lymph node cells were reduced upon restimulation with the antigen peptide in vitro. These results suggest that the ICOS/B7RP-1 interaction plays a critical role in the pathogenesis of uveitis. We also indicated that ICOS-mediated costimulation plays differential roles in EAU and experimental autoimmune encephalomyelitis, which is also a Th1 disease induced in the same manner as EAU.