The genomic landscape of histone modifications in human T cells

Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):15782-7. doi: 10.1073/pnas.0607617103. Epub 2006 Oct 16.

Abstract

To understand the molecular basis that supports the dynamic gene expression programs unique to T cells, we investigated the genomic landscape of activating histone modifications, including histone H3 K9/K14 diacetylation (H3K9acK14ac), H3 K4 trimethylation (H3K4me3), and the repressive histone modification H3 K27 trimethylation (H3K27me3) in primary human T cells. We show that H3K9acK14ac and H3K4me3 are associated with active genes required for T cell function and development, whereas H3K27me3 is associated with silent genes that are involved in development in other cell types. Unexpectedly, we find that 3,330 gene promoters are associated with all of these histone modifications. The gene expression levels are correlated with both the absolute and relative levels of the activating H3K4me3 and the repressive H3K27me3 modifications. Our data reveal that rapidly inducible genes are associated with the H3 acetylation and H3K4me3 modifications, suggesting they assume a chromatin structure poised for activation. In addition, we identified a subpopulation of chromatin regions that are associated with high levels of H3K4me3 and H3K27me3 but low levels of H3K9acK14ac. Therefore, these regions have a distinctive chromatin modification pattern and thus may represent a distinct class of chromatin domains.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetylation
  • Epigenesis, Genetic / genetics
  • Gene Expression / genetics
  • Genetic Markers / genetics
  • Genome, Human / genetics*
  • Histones / metabolism*
  • Humans
  • Lysine / metabolism
  • Promoter Regions, Genetic / genetics
  • T-Lymphocytes / metabolism*
  • Time Factors

Substances

  • Genetic Markers
  • Histones
  • Lysine