A set of 21 polyheteroaromatic compounds substituted with flexible cationic groups and of similar molecular size has been analyzed for binding with DNA and for effects of the bleomycin-mediated degradation of the DNA double helix. Increases in apparent rates of the DNA digestion were observed in all cases under the experimental conditions of noncompetitive binding of these compounds and bleomycin to DNA. Surprisingly, the quantitative structure-activity relationship analysis revealed two distinct correlations despite close structural similarities for the set of bleomycin amplifiers. These unusual results are explained in terms of the formation of two stereochemically different ternary complexes of activated bleomycin-DNA-amplifier. The relevance of this finding for the design of new bleomycin amplifiers is discussed.