Presynaptic kainate receptor activation is a novel mechanism for target cell-specific short-term facilitation at Schaffer collateral synapses

J Neurosci. 2006 Oct 18;26(42):10796-807. doi: 10.1523/JNEUROSCI.2746-06.2006.

Abstract

Target cell-specific differences in short-term plasticity have been attributed to differences in the initial release probability of synapses. Using GIN (GFP-expressing inhibitory neurons) transgenic mice that express enhanced green fluorescent protein (EGFP) in a subset of interneurons containing somatostatin, we show that Schaffer collateral synapses onto the EGFP-expressing somatostatin interneurons in CA1 have very large short-term facilitation, even larger facilitation than onto pyramidal cells, in contrast to the majority of interneurons that have little or no facilitation. Using a combination of electrophysiological recordings and mathematical modeling, we show that the large short-term facilitation is caused both by a very low initial release probability and by synaptic activation of presynaptic kainate receptors that increase release probability on subsequent stimuli. Thus, we have discovered a novel mechanism for target cell-specific short-term plasticity at Schaffer collateral synapses in which the activation of presynaptic kainate receptors by synaptically released glutamate contributes to large short-term facilitation, enabling selective enhancement of the inputs to a subset of interneurons.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Excitatory Postsynaptic Potentials / physiology*
  • Hippocampus / physiology
  • In Vitro Techniques
  • Male
  • Mice
  • Mice, Transgenic
  • Pyramidal Cells / physiology
  • Reaction Time
  • Receptors, Kainic Acid / physiology*
  • Receptors, Presynaptic / physiology*
  • Synapses / physiology*
  • Synaptic Transmission / physiology*

Substances

  • Receptors, Kainic Acid
  • Receptors, Presynaptic