Purpose: Cone-beam computed tomography (CBCT) images are currently used for positioning verification. However, it is yet unknown whether CBCT could be used in dose calculation for replanning in adaptive radiation therapy. This study investigates the dosimetric feasibility of CBCT-based treatment planning.
Methods and materials: Hounsfield unit (HU) values and profiles of Catphan, homogeneous/inhomogeneous phantoms, and various tissue regions of patients in CBCT images were compared to those in CT. The dosimetric consequence of the HU variation was investigated by comparing CBCT-based treatment plans to conventional CT-based plans for both phantoms and patients.
Results: The maximum HU difference between CBCT and CT of Catphan was 34 HU in the Teflon. The differences in other materials were less than 10 HU. The profiles for the homogeneous phantoms in CBCT displayed reduced HU values up to 150 HU in the peripheral regions compared to those in CT. The scatter and artifacts in CBCT became severe surrounding inhomogeneous tissues with reduced HU values up to 200 HU. The MU/cGy differences were less than 1% for most phantom cases. The isodose distributions between CBCT-based and CT-based plans agreed very well. However, the discrepancy was larger when CBCT was scanned without a bowtie filter than with bowtie filter. Also, up to 3% dosimetric error was observed in the plans for the inhomogeneous phantom. In the patient studies, the discrepancies of isodose lines between CT-based and CBCT-based plans, both 3D and IMRT, were less than 2 mm. Again, larger discrepancy occurred for the lung cancer patients.
Conclusion: This study demonstrated the feasibility of CBCT-based treatment planning. CBCT-based treatment plans were dosimetrically comparable to CT-based treatment plans. Dosimetric data in the inhomogeneous tissue regions should be carefully validated.