The present study examined the pathogenesis of interstitial inflammation and fibrosis in antihypertensively treated rats with two-kidney, one-clip hypertension. Hypertensive rats were randomized into four groups: no treatment and moderate, intermediate, and intensified lowering of blood pressure with increasing doses of a vasopeptidase inhibitor for 6 wk. The vasopeptidase inhibitor dose dependently lowered blood pressure. The tubulointerstitial damage was accompanied by a diffuse infiltration of mononuclear cells and circumscript mononuclear inflammatory cell cluster formation consisting mainly of T cells and to a lesser degree of macrophages and B cells. Real-time PCR analyses showed a dose-dependent induction of MCP-1 and the Th1-type chemokines IP10 and Mig as well as their receptor CXCR3 and the Th1 cytokine IFN-gamma. In situ hybridization and laser microdissection revealed a strong expression of these Th1-associated transcripts in the clusters and, in the case of MCP-1, also diffusely in the interstitium. The inflammation was accompanied by the appearance of myofibroblasts and synthesis of the fibrogenic factor plasminogen activator inhibitor-1 as well as the collagenase matrix metalloproteinase-2, leading to collagen I upregulation and interstitial scarring. No inflammation or fibrosis was found in normotensive rats treated with the vasopeptidase inhibitor. The renal injury in the clipped kidney is accompanied by compartment-specific chemokine expression and cell cluster formation of Th1 specificity associated with upregulation of fibrogenic proteins and matrix metalloproteinases. These findings suggest that the Th1 chemokines IP10 and Mig as well as their receptor CXCR3 are potential targets for therapeutic interventions in ischemic nephropathy.