Calcium influx through If channels in rat ventricular myocytes

Am J Physiol Cell Physiol. 2007 Mar;292(3):C1147-55. doi: 10.1152/ajpcell.00598.2005. Epub 2006 Oct 25.

Abstract

The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac (I(f))/neuronal (I(h)) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and I(h) channels in neurons. This raises the possibility of Ca(2+) permeation in I(f), the I(h) counterpart in cardiac myocytes, because of their structural homology. We performed simultaneous measurement of fura-2 Ca(2+) signals and whole cell currents produced by HCN2 and HCN4 channels (the 2 cardiac isoforms present in ventricles) expressed in HEK293 cells and by I(f) in rat ventricular myocytes. We observed Ca(2+) influx when HCN/I(f) channels were activated. Ca(2+) influx was increased with stronger hyperpolarization or longer pulse duration. Cesium, an I(f) channel blocker, inhibited I(f) and Ca(2+) influx at the same time. Quantitative analysis revealed that Ca(2+) flux contributed to approximately 0.5% of current produced by the HCN2 channel or I(f). The associated increase in Ca(2+) influx was also observed in spontaneously hypertensive rat (SHR) myocytes in which I(f) current density is higher than that of normotensive rat ventricle. In the absence of EGTA (a Ca(2+) chelator), preactivation of I(f) channels significantly reduced the action potential duration, and the effect was blocked by another selective I(f) channel blocker, ZD-7288. In the presence of EGTA, however, preactivation of I(f) channels had no effects on action potential duration. Our data extend our previous discovery of Ca(2+) influx in I(h) channels in neurons to I(f) channels in cardiac myocytes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Calcium Signaling / physiology*
  • Cells, Cultured
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
  • Ion Channel Gating / physiology*
  • Ion Channels / metabolism*
  • Myocytes, Cardiac / physiology*
  • Potassium Channels / metabolism*
  • Rats
  • Rats, Inbred SHR
  • Rats, Sprague-Dawley
  • Rats, Wistar
  • Ventricular Function*

Substances

  • HCN4 protein, rat
  • Hcn2 protein, rat
  • Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
  • Ion Channels
  • Potassium Channels
  • Calcium