Evidence for the multimeric structure of ferroportin

Blood. 2007 Mar 1;109(5):2205-9. doi: 10.1182/blood-2006-06-032516. Epub 2006 Oct 31.

Abstract

Ferroportin (Fpn) (IREG1, SLC40A1, MTP1) is an iron transporter, and mutations in Fpn result in a genetically dominant form of iron overload disease. Previously, we demonstrated that Fpn is a multimer and that mutations in Fpn are dominant negative. Other studies have suggested that Fpn is not a multimer and that overexpression or epitope tags might affect the localization, topology, or multimerization of Fpn. We generated wild-type Fpn with 3 different epitopes, GFP, FLAG, and c-myc, and expressed these constructs in cultured cells. Co-expression of any 2 different epitope-tagged proteins in the same cell resulted in their quantitative coimmunoprecipitation. Treatment of Fpn-GFP/Fpn-FLAG-expressing cells with crosslinking reagents resulted in the crosslinking of Fpn-GFP and Fpn-FLAG. Western analysis of rat glioma C6 cells or mouse bone marrow macrophages exposed to crosslinking reagents showed that endogenous Fpn is a dimer. These results support the hypothesis that the dominant inheritance of Fpn-iron overload disease is due to the dominant-negative effects of mutant Fpn proteins.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cation Transport Proteins / genetics
  • Cation Transport Proteins / immunology
  • Cation Transport Proteins / metabolism*
  • Cell Line
  • Epitopes / immunology
  • Humans
  • Mice
  • Protein Binding
  • Rats

Substances

  • Cation Transport Proteins
  • Epitopes
  • metal transporting protein 1