The genetic locus of Nkx3.1, an early murine marker of sclerotome and prostate development, was disrupted by a knock in of CRE recombinase via homologous recombination in embryonic stem cells. Cell fate mapping revealed previously unidentified cell lineages expanded from Nkx3.1-expressing cell populations and recapitulated reported Nkx3.1 expression patterns. In lineage trace experiments of E18.5 Nkx3.1-CRE; R26R embryos novel staining was observed in areas of the lungs, portions of the duodenum, and vertebral elements of the skeleton. beta-galactosidase activity measured in Nkx3.1-CRE; R26R and Nkx3.2-CRE; R26R embryos was observed in overlapping regions of the sclerotome but no apparent change in Nkx3.1 expression was seen in the Nkx3.2 mutants by in situ hybridization.