A method for the deposition of thin piezoelectric aluminum nitride (AlN) films with a nonzero c-axis mean tilt has been developed. The deposition is done in a standard reactive magnetron sputter deposition system without any hardware modifications. In essence, the method consists of a two-stage deposition process. The resulting film has a distinct tilted texture with the mean tilt of the c-axis varying roughly in the interval 28 to 32 degrees over the radius of the wafer excluding a small exclusion zone at the center of the latter. The mean tilt angle distribution over the wafer has a circular symmetry. A membrane-type shear mode thickness-excited thin film bulk acoustic resonator together with a micro-fluidic transport system has been subsequently fabricated using the two stage AlN deposition as well as standard bulk micro machining of Si. The resonator consisted of a 2-microm-thick AlN film with 200nm-thick Al top and bottom electrodes. The resonator was characterized with a network analyzer when operating in both air and water. The shear mode resonance frequency was about 1.6 GHz, the extracted device Q around 350, and the electromechanical coupling kt2 2% when the resonator was operated in air, whereas the latter two dropped down to 150 and 1.8%, respectively, when the resonator was operated in pure water.