We report the design, synthesis, and evaluation of rigid oligonaphthalenediimide (O-NDI) rods that are expected to act as transmembrane anion-pi slides. Studies in fluorogenic large unilamellar egg yolk phosphatidylcholine vesicles reveal that rigid O-NDI rods mediate anion-selective transport with a rare halide VI selectivity sequence (Cl- > F- > Br- > I-). This and decreasing activity, selectivity, and halide sequence with increasing positive charge of the rod termini support the occurrence of anion-pi interactions. A strong anomalous mole fraction effect in Cl-/I- mixtures is in agreement with the existence of multiple active sites along the anion-pi slide and multi-anion hopping as a mechanism of transport. The strong inverted NDI quadruple moment found by DFT calculations is in excellent agreement with these results.