The tumor suppressor LKB1 is an evolutionarily conserved serine/threonine kinase. In humans, LKB1 can be inactivated either by germ-line mutations resulting in Peutz-Jeghers syndrome or by somatic mutations causing predisposition to multiple sporadic cancers. LKB1 has wide-ranging functions involved in tumor suppression and cell homeostasis, including establishing cell polarity, setting energy metabolic balance (via phosphorylation of AMP-dependent kinase), regulating the cell cycle, and promoting apoptosis. LKB1 function was previously linked to the tumor suppressor p53 and shown to activate the p53 target gene p21/WAF1. In this study, we further investigated LKB1 activation of the p21/WAF1 gene and addressed whether LKB1 is directly involved at the gene promoter. We find that, consistent with previous studies, LKB1 stabilizes p53 in vivo, correlating with activation of p21/WAF1. We show that LKB1 physically associates with p53 in the nucleus and directly or indirectly phosphorylates p53 Ser15 (previously shown to be phosphorylated by AMP-dependent kinase) and p53 Ser392. Further, these two p53 residues are required for LKB1-dependent cell cycle G(1) arrest. Chromatin immunoprecipitation analyses show that LKB1 is recruited directly to the p21/WAF1 promoter, as well as to other p53 activated promoters, in a p53-dependent fashion. Finally, a genetic fusion of LKB1 to defective p53, deleted for its activation domains, promotes activation of p21/WAF1. These results indicate that LKB1 has a direct role in activation of p21/WAF1 gene.