Murine bone marrow cells expressing the cell surface Ag RB6-8C5 were identified by fluorescence-activated cell-sorting analysis using a rat IgG mAb. The fluorescent intensity of RB6-8C5 was variable on bone marrow cells. This made it possible to separate bone marrow cells into distinct subpopulations, RB6-8C5neg, RB6-8C5lo, and RB6-8C5hi cells. Morphologic analysis of the sorted populations demonstrated that the Ag was expressed on myeloid cells. The expression of RB6-8C5 increases with granulocyte maturation, whereas expression is transient on cells in the monocytic lineage. The RB6-8C5hi sorted cells were enriched for end-stage neutrophils (75%), whereas the RB6-8C5lo sorted cells contained more immature myeloid cells and myelocytes (75%). Lymphocytes and macrophages were less than 5% in any RB6-8C5+ population, whereas the erythroid precursors were RB6-8C5neg. The colony forming unit culture (CFU-C) (greater than 90%) were found in the RB6-8C5neg and RB6-8C5lo populations, and all the CFU-granulocyte, erythroid, megakaryocyte, and macrophage (CFU-GEMM) and burst-forming units-erythroid (BFU-E) were in the RB6-8C5neg population. Granulocyte-macrophage-CSFR (GM-CSFR) and IL-1 alpha R were expressed on RB6-8C5hi bone marrow cells, whereas no receptors could be detected on RB6-8C5neg and RB6-8C5lo cells. The expression of the RB6-8C5 Ag can be induced on RB6-8C5neg cells in liquid culture by IL-3 and granulocyte-macrophage CSF. Thus, RB6-8C5 is a myeloid differentiation Ag whose expression can be regulated by cytokines.