Regulatory effects of mammalian target of rapamycin-activated pathways in type I and II interferon signaling

J Biol Chem. 2007 Jan 19;282(3):1757-68. doi: 10.1074/jbc.M607365200. Epub 2006 Nov 17.

Abstract

The mechanisms regulating initiation of mRNA translation for the generation of protein products that mediate interferon (IFN) responses are largely unknown. We have previously shown that both Type I and II IFNs engage the mammalian target of rapamycin (mTOR), resulting in downstream phosphorylation and deactivation of the translational repressor 4E-BP1 (eIF4E-binding protein 1). In the current study, we provide direct evidence that such regulation of 4E-BP1 by IFNalpha or IFNgamma results in sequential dissociation of 4E-BP1 from eukaryotic initiation factor-4E and subsequent formation of a functional complex between eukaryotic initiation factor-4E and eukaryotic initiation factor-4G, to allow initiation of mRNA translation. We also demonstrate that the induction of key IFNalpha- or IFNgamma-inducible proteins (ISG15 (interferon-stimulated gene 15) and CXCL10) that mediate IFN responses are enhanced in 4E-BP1 (4E-BP1(-/-)) knockout MEFs, as compared with wild-type 4E-BP1(+/+) MEFs. On the other hand, IFN-dependent transcriptional regulation of the Isg15 and Cxcl10 genes is intact in the absence of 4E-BP1, as determined by real time reverse transcriptase-PCR assays and promoter assays for ISRE and GAS, establishing that 4E-BP1 plays a selective negative regulatory role in IFN-induced mRNA translation. Interestingly, the induction of expression of ISG15 and CXCL10 proteins by IFNs was also strongly enhanced in cells lacking expression of the tuberin (TSC2(-/-)) or hamartin (TSC1(-/-)) genes, consistent with the known negative regulatory effect of the TSC1-TSC2 complex on mTOR activation. In other work, we demonstrate that the induction of an IFN-dependent antiviral response is strongly enhanced in cells lacking expression of 4E-BP1 and TSC2, demonstrating that these elements of the IFN-activated mTOR pathway exhibit important regulatory effects in the generation of IFN responses. Taken altogether, our data suggest an important role for mTOR-dependent pathways in IFN signaling and identify 4E-BP1 and TSC1-TSC2 as key components in the generation of IFN-dependent biological responses.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptor Proteins, Signal Transducing / metabolism
  • Animals
  • Antiviral Agents / pharmacology
  • Cell Cycle Proteins
  • Chemokine CXCL10
  • Chemokines, CXC / metabolism
  • Gene Expression Regulation*
  • Humans
  • Interferon Type I / metabolism*
  • Interferon-gamma / metabolism*
  • Mice
  • Phosphoproteins / metabolism
  • Protein Kinases / metabolism*
  • Signal Transduction
  • TOR Serine-Threonine Kinases
  • Tuberous Sclerosis Complex 1 Protein
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins / metabolism

Substances

  • Adaptor Proteins, Signal Transducing
  • Antiviral Agents
  • Cell Cycle Proteins
  • Chemokine CXCL10
  • Chemokines, CXC
  • EIF4EBP1 protein, human
  • Interferon Type I
  • Phosphoproteins
  • TSC1 protein, human
  • TSC2 protein, human
  • Tsc1 protein, mouse
  • Tsc2 protein, mouse
  • Tuberous Sclerosis Complex 1 Protein
  • Tuberous Sclerosis Complex 2 Protein
  • Tumor Suppressor Proteins
  • Interferon-gamma
  • Protein Kinases
  • MTOR protein, human
  • mTOR protein, mouse
  • TOR Serine-Threonine Kinases