The controlled synthesis of two novel h-WO3 hierarchical structures made of nanorods/nanowires has been successfully realized in a large scale via a simple hydrothermal method. It is demonstrated that the morphology of the final products is significantly influenced by adding different sulfates. The urchinlike and ribbonlike structures of WO3 can be selectively prepared by adding Rb2SO4 and K2SO4, respectively. The morphology evolvement and the growth mechanism were studied carefully. The sulfate-induced oriented attachment growth mechanism has been proposed for the possible formation mechanism of the ribbonlike sample. For urchinlike products, two growing stages are believed to be involved in the growth process. The current understanding of the growth mechanism of these nanostructures may be potentially applied for designing other oriented or hierarchical nanostructures based on 1D nanoscale building blocks through the direct solution-growth.