Platinum(II) complexes with pi-conjugated, naphthyl-substituted, cyclometalated ligands (RC N N): structures and photo- and electroluminescence

Chemistry. 2007;13(2):417-35. doi: 10.1002/chem.200600686.

Abstract

The crystal structures and photophysical properties of mononuclear [(RC N N)PtX](ClO4)n ((RC N N)=3-(6'-(2''-naphthyl)-2'-pyridyl)isoquinolinyl and derivatives; X=Cl, n=0; X=PPh(3) or PCy(3), n=1), dinuclear [(RC N N)2Pt2(mu-dppm)](ClO4)2 (dppm=bis(diphenyphosphino)methyl) and trinuclear [(RC N N)3Pt3(mu-dpmp)](ClO4)3 (dpmp=bis(diphenylphosphinomethyl)phenylphosphine) complexes are presented. The crystal structures show extensive intra- and/or intermolecular pipi interactions; the two (RC N N) planes of [(RC N N)2Pt2(mu-dppm)](ClO4)2 (R=Ph, 3,5-tBu2Ph or 3,5-(CF3)2Ph) are in a nearly eclipsed configuration with torsion angles close to 0 degrees. [(RC N N)PtCl], [(RC N N)2Pt2(mu-dppm)](ClO4)2, and [(RC N N)3Pt3(mu-dpmp)](ClO4)3 are strongly emissive with quantum yields of up to 0.68 in CH2Cl2 or MeCN solution at room temperature. The [(RC N N)PtCl] complexes have a high thermal stability (T(d)=470-549 degrees C). High-performance light-emitting devices containing [(RC N N)PtCl] (R=H or 3,5-tBu2Ph) as a light-emitting material have been fabricated; they have a maximum luminance of 63,000 cd m(-2) and CIE 1931 coordinates at x=0.36, y=0.54.