Synapse competition and elimination are a general developmental process both in central and in peripheral nervous systems that is strongly activity dependent. Some common features regulate synapse competition, and one of these is an application to development of the Hebb's postulate of learning: repeated coincident spike activity in competing presynaptic inputs on the same target cell inhibits competition, whereas noncoincident activity promotes weakening of some of the inputs and ultimately their elimination. Here we report experiments that indicate that the development of muscle innervation (initial polyneuronal innervation and subsequent synapse elimination) follows the Hebb's paradigm. We utilized two different models of muscle reinnervation in the adult rat: 1) we crushed nerves going to soleus or extensor digitorum longus muscles, to activate regeneration of the presynaptic component of the neuromuscular junctions (NMJ), or 2) we injected the soleus muscle with Marcaine (a myotoxic agent) to activate regeneration of the postsynaptic component, the muscle fiber. A condition of transient polyneuronal innervation occurs during NMJ regeneration in both cases, although the two models differ insofar as the relative strength of the competing inputs is concerned. During the period of competition (a few days or weeks, in Marcaine or crush experiments, respectively), we imposed a synchronous firing pattern on the competing inputs by stimulating motor axons distal to a chronic conduction block and demonstrated that this procedure strongly inhibits synapse elimination, with respect to control muscles in which regeneration occurs under natural impulse activity of motoneurons.
(c) 2007 Wiley-Liss, Inc.