We demonstrate that aptamer-capped near-infrared PbS quantum dots (QDs) can detect a target protein based on selective charge transfer. The water-soluble QDs are synthesized with the thrombin-binding aptamer, which retains the secondary quadruplex structure necessary for binding to thrombin. These QDs have diameters of 3-6 nm and fluoresce around 1050 nm. When the aptamer-functionalized QD binds to its target, a fluorescence quenching occurs due to charge transfer from amine groups on the protein to the QD. Thrombin is detected within 1 min with a detection limit of approximately 1 nM. This selective detection is observed even in the presence of high background concentrations of interfering negatively or positively charged proteins, suggesting that aptamer-capped QDs could be useful for label-free protein assays.