Efficient cloning of plant genomes into bacterial artificial chromosome (BAC) libraries with larger and more uniform insert size

Plant Biotechnol J. 2004 May;2(3):181-8. doi: 10.1111/j.1467-7652.2004.00065.x.

Abstract

The construction of bacterial artificial chromosome (BAC) libraries remains relatively complex and laborious, such that any technological improvement is considered to be highly advantageous. In this study, we addressed several aspects that improved the quality and efficiency of cloning of plant genomes into BACs. We set the 'single tube vector' preparation method with no precipitation or gel electrophoresis steps, which resulted in less vector DNA damage and a remarkable two- to threefold higher transformation efficiency compared with other known vector preparation methods. We used a reduced amount of DNA for partial digestion (up to 5 microg), which resulted in less BAC clones with small inserts. We performed electrophoresis in 0.25 x TBE (Tris, boric acid, ethylenediaminetetraacetic acid) buffer instead of 0.5 x TBE, which resulted in larger and more uniformly sized BAC inserts and, surprisingly, a two- to threefold higher transformation efficiency, probably due to less contamination with borate ions. We adopted a triple size selection that resulted in an increased mean insert size of up to 70 kb and a transformation efficiency comparable with that of double size selection. Overall, the improved protocol presented in this study resulted in a five- to sixfold higher cloning efficiency and larger and more uniformly sized BAC inserts. BAC libraries with the desired mean insert size (up to 200 kb) were constructed from several plant species, including hexaploid wheat. The improved protocol will render the construction of BAC libraries more available in plants and will greatly enhance genome analysis, gene mapping and cloning.