Movement-related magnetic fields (MRMFs) accompanying left and right unilateral and bilateral finger flexions were studied in 6 right-handed subjects. Six different MRMF components occurring prior to, and during both unilateral and bilateral movements are described: a slow pre-movement readiness field (RF, 1-0.5 sec prior to movement onset); a motor field (MF) starting shortly before EMG onset; 3 separate "movement-evoked" fields following EMG onset (MEFI at 100 msec; MEFII at 225 msec; and MEFIII at 320 msec); and a "post-movement" field (PMF) following the movement itself. The bilateral topography of the RF and MF for both unilateral and bilateral movements suggested bilateral generators for both conditions. Least-squares fitting of equivalent current dipole sources also indicated bilateral sources for MF prior to both unilateral and bilateral movements with significantly greater strength of contralateral sources in the case of unilateral movements. Differences in pre-movement field patterns for left versus right unilateral movements indicated possible cerebral dominance effects as well. A single current dipole in the contralateral sensorimotor cortex could account for the MEFI for unilateral movements and bilateral sensorimotor sources for bilateral movements. Other MRMF components following EMG onset indicated similar sources in sensorimotor cortex related to sensory feedback or internal monitoring of the movement. The results are discussed with respect to the possible generators active in sensorimotor cortex during unilateral and bilateral movement preparation and execution and their significance for the study of cortical organization of voluntary movement.