A study aimed at the characterization of five compounds with different chemical characteristics and gustative perceptions by measuring the variations of the electrical impedance of a composite sensor array is presented. The array was composed of five sensors of three different types based on carbon nanotubes or carbon black dispersed in polymeric matrices and doped polythiophenes. Measurements were carried out by evaluating the electrical impedance of the sensor array at a frequency of 150 Hz, and the data acquisition process was automated; a mechanical arm and a rotating platform controlled by a data acquisition card and a dedicated software allowed the sequential dipping of sensors in the test solutions. Fifty different solutions eliciting the 5 basic tastes (sodium chloride, citric acid, glucose, glutamic acid and sodium dehydrocholate for salty, sour, sweet, umami and bitter, respectively) at 10 concentration levels comprising the human perceptive range were analysed. More than 100 measurements were carried for each sample in a 4-month period to evaluate the system repeatability and robustness. The impedentiometric composite sensor array is shown to be sensitive, selective and stable for use in an electronic tongue.