A segmental analysis of the key regions of HLA-DR1 that control T cell allorecognition was performed by using a series of transfected cell lines expressing the products of recombinant DRB/H-2Eb genes, paired with either DR alpha or H-2E alpha. Four of eight human T cell clones tolerated substitution of the H-2E alpha chain, but only one clone showed any response to the DR alpha/H-2E beta k dimer. Both the membrane-proximal and the membrane-distal domains of the beta-chain played an important part in stimulating these clones. The response of four of eight clones was markedly inhibited by substitution of the H-2E beta 2 for the DR beta 2 domain. This inhibition showed a complete correlation with the sensitivity of the clones to inhibition by anti-CD4 mAb. Taken together, these results suggest that the interaction site for CD4 may include residues on the beta 2-domain. Introduction of H-2Ek sequence into either half of the beta 1-domain led to a complete loss of response by all but two of the clones. This is consistent with these clones having dual specificity for exposed DR1-specific polymorphisms and for DR1-bound peptides. The pattern of response of one of the clones suggested that indirect conformational effects on the alpha 1-domain may also contribute to the influence of the amino-terminal half of the beta 1-domain on T cell recognition. In the presence of H-2E alpha, this clone responded more strongly when the amino-terminal half of the beta 1-domain was of H-2Ek rather than DR1 sequence. This implies that species matching of the floor of the beta 1-domain with the alpha-chain is more important than the presence of the alpha-chain of the parental species.