Negative-ion electrospray tandem mass spectrometry with collision-induced dissociation is assessed for sequence determination of multiply sulfated oligosaccharide fragments of carrageenan obtained from partial depolymerization of the polysaccharides by either enzymatic digestion or mild acid hydrolysis. Carrageenan oligosaccharides with homogeneous disaccharide compositions were used to establish their fragmentation pattern, which was then applied to sequence determination of unusual oligosaccharides with either "hybrid" biose compositions or odd-numbered residues. As sulfate groups are labile, sulfate loss during collision-induced association was prevented by sodium adduction. The product ion spectra of [M - Na]- (where M represents the sodium salt of oligosaccharides) feature an extensive series of B- and C-type glycosidic cleavages, whereas the Y-type cleavage occurs mainly at the sulfated residues. The assignment of reducing or nonreducing terminal fragments was assisted by oligosaccharide reduction and the product ion spectra of the derived alditols. Due to the anionic nature of the sulfate present, high-sensitivity detection (1-5 pmol, using a hexasaccharide as an example) was obtained.