A series of heterobimetallic complexes of general structure [RhL(2){eta(5)-(2-ferrocenyl)indenyl}] (L(2)=cod, nbd, L=CO; cod=cyclooctadiene; nbd=norbornadiene) has been synthesised with the aim of tuning the metal-metal interaction in their mixed-valence ions generated both by chemical and electrochemical oxidation, and the results are compared with those obtained for [RhL(2){eta(5)-(1-ferrocenyl)indenyl}] isomers. Crystallographic studies and DFT calculations provide a detailed description of the structural and electronic features of these complexes evidencing a significant difference in the extent of planarity of the flexible bridging ligand between the 1- and 2-ferrocenyl isomers. Independent experimental probes, in particular the potential splitting in the cyclic voltammograms and the IT bands in the near-IR spectra, are rationalised in the framework of Marcus-Hush theory and at quantum chemistry level by DFT and TD-DFT methods. These methods allow us to establish a trend based on the magnitude of iron-rhodium electronic coupling H(ab) ranging from valence trapped to almost delocalised ions. The quasi planar bridge and the olefin ancillary ligands make [Rh(nbd){eta(5)-(2-ferrocenyl)indenyl}](+) and [Rh(cod){eta(5)-(2-ferrocenyl)indenyl}](+) rare examples of heterobimetallic systems which can be classified as borderline Class II/Class III species.