Manipulation of plant tolerance to herbicides through co-ordinated metabolic engineering of a detoxifying glutathione transferase and thiol cosubstrate

Plant Biotechnol J. 2005 Jul;3(4):409-20. doi: 10.1111/j.1467-7652.2005.00134.x.

Abstract

The diphenyl ether herbicide fomesafen can be used selectively in soybean (Glycine max) due to its rapid detoxification by tau class glutathione transferases (GmGSTUs) which preferentially utilize the endogenous thiol homoglutathione (hGSH) as cosubstrate. Soybean cDNAs encoding GmGSTU21, which is highly active in detoxifying fomesafen, and an hGSH synthetase (GmhGS) have been cloned and functionally identified in Escherichia coli. Tobacco plants, which have limited GST activities towards fomesafen and which accumulate glutathione (GSH), rather than hGSH, have been transformed with either GmhGS alone, or a dual construct of GmhGS-GmGSTU21, both under the control of constitutive promoters. Using either construct, the transgenic tobacco accumulated hGSH, with a concomitant increase in GSH content. Segregating T1 plants were analysed for thiol content and GST activity towards fomesafen with GSH and hGSH as cosubstrates, and then scored for photobleaching injury caused by applications of fomesafen. These studies showed that hGSH accumulation alone gave no significant protection against the herbicide and that tolerance was only seen in plants which contained appreciable concentrations of hGSH and GmGSTU21 activity. Tolerance in the dual transformants was associated with the metabolism of radiolabelled fomesafen to inactive hGSH-derived conjugates, while susceptible lines were unable to detoxify the herbicide. These studies confirm the combined importance of specific GSTs and their preferred thiol cosubstrates in conferring herbicide selectivity traits in planta.