The role of glucocorticoids and second messenger systems in the regulation of the vasopressin (VP) gene was studied in the human small cell lung carcinoma cell line GLC-8. Small cell lung carcinoma GLC-8 cells express VP mRNA and contain both glucocorticoid and mineralocorticoid receptors. Treatment with the synthetic glucocorticoid dexamethasone when added alone at 10(-8) M had no effect on the VP mRNA level and decreased the level by 30% at 10(-6) M. However, the effect of dexamethasone changed to positive when cells were simultaneously treated with cAMP-enhancing agents. VP mRNA levels, which were elevated by 1.5- to 2-fold by the cAMP-enhancing agents alone, increased a further 1.5- to 3-fold by dexamethasone. Thus, the combined effect of dexamethasone and cAMP stimulation was a 3- to 7.5-fold increase in VP mRNA levels. Long term treatment with the phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) reduced the VP mRNA level by 75%. The TPA-suppressed VP mRNA levels could be up-regulated about 6-fold by simultaneous treatment with 8-bromo-cAMP. Dexamethasone did not alter the TPA-suppressed VP mRNA levels. These results indicate that both cAMP and protein kinase-C pathways as well as glucocorticoid receptors are involved in the regulation of VP mRNA levels and that these factors interact. This leads to a negative or positive response of VP gene expression to glucocorticoids in a state-dependent manner. The interactions may be of significance in a physiological context and relate to the different regulation of VP-expressing systems in the brain.