The main purpose of this report is to provide a review of the present knowledge on the structure, function, and possible regulatory role of c-fes in the genetic programs underlying the proliferation and differentiation of hematopoietic myeloid cells. Fes encodes a non-receptor tyrosine kinase that is highly expressed in immature and differentiated cells of the granulocytic and mono-macrophagic lineages. It is therefore possible that c-fes is involved in the signal transduction of myeloid cell differentiation, even if the specific substrates phosphorylated by this protooncogene are only poorly characterised. Several experimental models have been established to evaluate the role of c-fes in myeloid differentiation, in particular: the differentiation capacity of HL60 cells lacking the p92(c-fes) protein, the transfection of c-fes gene into K562 cells and transgenic animals overexpressing c-fes. The results obtained point to the importance of c-fes in myeloid cells, since it appears to be involved in granulocytic maturation as an antiapoptotic gene, and in macrophagic maturation as a regulatory gene.