Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography

J Struct Biol. 2007 May;158(2):214-23. doi: 10.1016/j.jsb.2006.09.008. Epub 2006 Oct 27.

Abstract

In the last few years, SAXS of biological materials has been rapidly evolving and promises to move structural analysis to a new level. Recent innovations in SAXS data analysis allow ab initio shape predictions of proteins in solution. Furthermore, experimental scattering data can be compared to calculated scattering curves from the growing data base of solved structures and also identify aggregation and unfolded proteins. Combining SAXS results with atomic resolution structures enables detailed characterizations in solution of mass, radius, conformations, assembly, and shape changes associated with protein folding and functions. SAXS can efficiently reveal the spatial organization of protein domains, including domains missing from or disordered in known crystal structures, and establish cofactor or substrate-induced conformational changes. For flexible domains or unstructured regions that are not amenable for study by many other structural techniques, SAXS provides a unique technology. Here, we present SAXS shape predictions for PCNA that accurately predict a trimeric ring assembly and for a full-length DNA repair glycosylase with a large unstructured region. These new results in combination with illustrative published data show how SAXS combined with high resolution crystal structures efficiently establishes architectures, assemblies, conformations, and unstructured regions for proteins and protein complexes in solution.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Crystallography, X-Ray / methods*
  • DNA Glycosylases / chemistry
  • DNA Repair Enzymes / chemistry
  • Models, Molecular
  • Protein Conformation
  • Proteins / chemistry*
  • Scattering, Small Angle*
  • Solutions
  • X-Ray Diffraction / methods*

Substances

  • Proteins
  • Solutions
  • DNA Glycosylases
  • DNA Repair Enzymes