Apoptosis proteins have a central role in the development and the homeostasis of an organism. These proteins are very important for understanding the mechanism of programmed cell death. The function of an apoptosis protein is closely related to its subcellular location. Based on the concept that the subcellular location of an apoptosis protein is mainly determined by its amino acid sequence, a new algorithm for prediction of the subcellular location of an apoptosis protein is proposed. By using of a distinctive set of information parameters derived from the primary sequence of 317 apoptosis proteins, the increment of diversity (ID), the sole prediction parameter, is calculated. The higher predictive success rates than the previous other algorithms is obtained by the jackknife tests using the expanded dataset. Our prediction results show that the local compositions of twin amino acids and hydropathy distribution are very useful to predict subcellular location of protein.