Over the last few decades, reconstructive surgery has shifted from a resection-oriented approach toward strategies focusing on repair and regeneration of tissues. As the main aim of maxillofacial reconstruction has been the restoration of bone form and function, surgeons used artificial tissue substitutes in the early decades of bone reconstruction. These artificial materials significantly improved the ability of surgeons to restore the form and, to some extent, the function of defective bones. Despite the fact that every artificial material has specific disadvantages, the use of biomaterials is a common treatment option in clinical practice even today. Due to the more detailed understanding that exists concerning transplantation of cells and tissues, autogenous grafts are the second mainstay in clinical practice. However, the main disadvantage of using autogenous grafts is donor site morbidity and donor shortage. Research is currently in progress into the use of cell-based approaches in reconstructive surgery, since cells are the driving elements for all repair and regeneration processes. Various cell populations have been reported on in the relevant literature. These cells can be classified according to differentiation capacity and the tissue from which they originated. In this review, unrestricted cells, multipotential progenitor cells, determined cells, and genetically modified cells are described systematically, and their advantages as well as limitations are discussed. (More than 50 references.)