The effect of anti-CD69 monoclonal antibodies (mAbs) on the induction of the cytolytic activity in different types of lymphoid effector cells has been investigated. Three anti-CD69 mAbs, including the reference mAb MLR3 and two new mAbs (c227 and 31C4), have been used. All cloned CD3-CD16+ natural killer (NK) cells belonging to different subsets (as defined by the surface expression of GL183 and/or EB6 antigens) were efficiently triggered by anti-CD69 mAbs and lysed P815 mastocytoma cells in a redirected killing assay. Triggering of the cytolytic activity could also be induced in CD3-CD16- NK clones, which fail to respond to other stimuli (including anti-CD16, anti-CD2 mAbs, or phytohemagglutinin). A similar triggering effect was detected in T cell receptor (TCR) gamma/delta+ clones belonging to different subsets. On the other hand, anti-CD69 mAbs could not induce triggering of the cytolytic activity in TCR alpha/beta+ cytolytic clones. Since all thymocytes are known to express CD69 antigen after cell activation, we analyzed a series of phenotypically different cytolytic thymocyte populations and clones for their responsiveness to anti-CD69 mAb in a redirected killing assay. Again, anti-CD69 mAb triggered TCR gamma/delta+ but not TCR alpha/beta+ thymocytes. Anti-CD69 mAb efficiently triggered the cytolytic activity of "early" thymocytes lines or clones (CD3-4-8-7+), which lack all other known pathways of cell activation. Thus, it appears that CD69 molecules may initiate a pathway of activation of cytolytic functions common to a number of activated effector lymphocytes with the remarkable exception of TCR alpha/beta+ cytolytic cells.