Ultrahigh-resolution optical coherence tomography (OCT) was used for noninvasive in vivo evaluation of the wound healing process. Cutaneous wounds were induced by 2.5-mm diameter full-thickness punch biopsies on the dorsal surface of seven mice. OCT imaging was performed to assess the structural characteristics associated with the healing process. The OCT results were compared to corresponding histology. Two automated quantitative analysis routines were implemented to identify the dermal-epidermal junction and segment the OCT images. Hallmarks of cutaneous wound healing such as wound size, epidermal migration, dermal-epidermal junction formation, and differences in wound composition were readily identified on the OCT images. Blister formation was also observed. Preliminary findings suggest OCT is a viable tool to noninvasively monitor wound healing in vivo.