Strong viroid-caused pathogenesis was achieved in tomato cv. Rutgers by biolistic transfer of severe or lethal potato spindle tuber viroid (PSTVd) strains, while other tomato genotypes (e.g., Moneymaker) were tolerant. With reciprocal hybrids between sensitive and tolerant genotypes, we show that plant depression dominates over tolerance. Biolistic transfer of the most pathogenic PSTVd strain AS1 to Nicotiana benthamiana, which is considered to be a symptomless PSTVd host, led to a strong pathogenesis reaction and stunting, suggesting the presence of specific viroid pathogenesis-promoting target(s) in this plant species. Total levels of small siRNA-like PSTVd-specific RNAs were enhanced in strongly symptomatic tomato and N. benthamiana plants after biolistic infection with AS1 in comparison to the mild QFA strain. This indicates association of elevated levels of viroid-specific small RNA with production of strong symptoms. In symptom-bearing tomato leaves in comparison to controls, an RNase of approximately 18 kDa was induced and the activity of a nuclease of 34 kDa was elevated by a factor of seven in the vascular system. Sequence analysis of the nuclease cDNA designated TBN1 showed high homology with plant apoptotic endonucleases. The vascular-specific pathogenesis action is supported by light microscopic observations demonstrating a certain lack of xylem tissue and an arrest of the establishment of new vascular bundles in collapsed plants.