Glutamate is one candidate for the neurotransmitters and/or neuromodulators involved in taste signaling in taste buds. Group II metabotropic glutamate receptors (mGluRs: mGluR2 and mGluR3) are known to function as presynaptic receptors that regulate the release of glutamate and/or other neurotransmitters in the central nervous system. Group II mGluRs are negatively linked to adenylyl cyclase through Galphai subunits and thereby reduce the turnover of cAMP. In rat taste tissues, a subset of adenylyl-cyclase-8-expressing taste cells coexpress the Galphai subunits gustducin and Galphai2. However, the expression patterns of group II mGluRs in rat taste tissues have not yet been elucidated. We have therefore examined the expression patterns of mGluR2, mGluR3, and gustducin in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays have revealed that mGluR2 and mGluR3 mRNAs are expressed in the circumvallate papillae. In situ hybridization analyses have detected positive signals for mGluR2 and mGluR3 mRNAs only in the circumvallate taste buds. Among the fungiform, foliate, and circumvallate papillae, an antibody against mGluR2/3 labels a subset of taste bud cells and nerve fibers immediately beneath the taste lingual epithelium. Double-labeling experiments have demonstrated that mGluR2/3-positive cells coexpress gustducin. These results indicate that mGluR2 and mGluR3 are coupled to Galphai subunits and play roles in glutamate-mediated signaling in taste transductions.