Petroleum contamination from oil spills is a continuing threat to our ocean's fragile ecosystems. Herein, we explored the effects of the water-soluble fraction of crude oil on a stony coral, Pocillopora damicornis (Linneaeus 1758). We developed methods for exposing corals to various concentrations of crude oil and for assessing the potential molecular responses of the corals. Corals were exposed to water-accommodated fraction solutions, and appropriate cellular biomarkers were quantified. When compared to the "healthy" control specimens, exposed corals exhibited shifts in biomarker concentrations that were indicative of a shift from homeostasis. Significant changes were seen in cytochrome P450 1-class, cytochrome P450 2-class, glutathione-S-transferase-pi, and cnidarian multixenobiotic resistance protein- biomarkers, which are involved the cellular response to, and manipulation and excretion of, toxic compounds, including polycyclic aromatic hydrocarbons. A shift in biomarkers necessary for porphyrin production (e.g., protoporphyrinogen oxidase IX and ferrochelatase) and porphyrin destruction (e.g., heme oxygenase-1 and invertebrate neuroglobin homologue) illustrates only one of the cellular protective mechanisms. The response to oxidative stress was evaluated through measurements of copper/zinc superoxide dismutase-1 and DNA glycosylase MutY homologue-1 concentrations. Likewise, changes in heat shock protein 70 and small heat shock proteins indicated an adjustment in the cellular production of proteins. Finally, the results of this laboratory study were nearly identical to what we observed previously among corals of a different species, Porites lobata, exposed to an oil spill in the field after the grounding of the Merchant Vessel Kyowa Violet.